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ABSTRACT 

We propose a 3D self-localisation method that uses 3D angle of arrival (AOA) information (ie., 
azimuth and elevation measurements) from landmarks. The formulation is based on 
minimising the collinearity error between the estimated line of sight (LOS) to the landmark 
and the measured AOA. This method runs in two parts - initial estimation of the vehicle 
azimuth and position assuming the vehicle has no tilt, and iterative 3D pose estimation based 
on a small angle approximation approach. Simulation study indicates that this method is 
efficient, requiring a small number of iterations, globally convergent and robust. 
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3D Self-Localisation from Angle of Arrival 
Measurements 

Executive Summary 

In this report, we introduce a 3D self-localisation method that uses three-dimensional 
angle of arrival (AOA) information (i.e. azimuth and elevation measurements) from 
landmarks. We assume here that such measurements are available, even though in 
practice they need to be processed from the onboard sensors such as cameras or RF 
receivers. 

This work is a follow on to our previous study on 2D localisation where the altitude 
and the tilt angle of the vehicle were not relevant. However, in many applications the 
vehicle on-board sensor may be tilted making bearing measurements erroneous. In 
these situations the localisation problem has to be formulated in six-degrees of freedom 
(i.e. 3 DOF for sensor position and 3 DOF for sensor orientation). 

The formulation is based on minimising the collinearity error between the estimated 
line of sight (LOS) and the measured AOA. Using such error metric, we arrive at an 
iterative algorithm that runs in two parts: initial estimation of position and azimuth 
assuming zero tilt, followed by iterative orientation and position updates using small 
angle approximation approach. 

The proposed method is evaluated against a benchmark known as the orthogonal 
iteration which is known to be accurate, globally convergent, and efficient. The 
experimental results indicate that the proposed method is more accurate than the 
benchmark. The proposed method is also efficient requiring a small number of 
iterations and appears to be globally convergent. 
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ACRONYMS 

AOA Angle of Arrival 
AIPE Angle Increment and Position Estimation 
AO Absolution Orientation 
AZIPE Azimuth and Position Estimation 
CRLB Cramer Rao Lower Bound 
GPS Global Positioning System 
LOS Line of Sight 
MLE Maximum Likelihood Estimation/Estimator 
OI Orthogonal Iteration 
RF Radio Frequency 
RMS Root Mean Square 
SVD Singular Vector Decomposition 
UAV Unmanned Aerial Vehicle 
UGV Unmanned Ground Vehicle 
uLOS Unit Line of Sight 

SYMBOLS 

(or,, /?,) azimuth and elevation angle measurements to the i   landmark 

x, x, X scalar, vector and matrix expressions for parameter x 

p, i  landmark position in the reference frame 

P vehicle vehicle position in the reference frame 

q, i  landmark position in the translated reference frame 

b vehicle position in the translated reference frame 

di distance between q, and the estimated vehicle position, b 

n number of landmarks 
R rotation matrix from the reference frame to the body frame 
t translation vector (t = -Rb) 

v, uLOS measurement vector to i  landmark 

V; projection matrix (= v,v,7 ) 

(<j>, 0,1//) roll, pitch and yaw angles of the vehicle 
e vector to be estimated 
E quadratic cost function 
a standard deviation 

<JX variance of variable x 

N measurement error covariance matrix 
P estimation error covariance matrix 
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1. Introduction 

The capabilities that unmanned robotic vehicles provide are expected to revolutionise the way 
combat operations are conducted. The UAV or UGV will reduce the risk to soldiers in 
hazardous situations, and alleviate the human workload and manpower requirements. 
Possible applications include: search and rescue (in land and sea), surveillance of military 
bases or nuclear sites, demining activities, underwater construction and mapping, agriculture, 
logistics in battle fields. 

One of the key components in autonomous functionality is localisation, which is the process of 
determining its own position and orientation using onboard sensors or radio links. We are 
particularly interested in landmark-based localisation which is attractive in a controlled 
environment where the landmarks can be precisely located. 

In open outdoor environments, differential GPS systems can provide precise position 
information. However, there are situations where GPS is not adequate such as indoor, 
underwater, extraterrestrial or urban environments, because of signal blockage and multipath 
interferences. Furthermore, for stand-alone GPS systems, the position accuracy may not be 
sufficient. In military context, GPS receivers at low altitudes are more susceptible to jamming 
or spoofing from the adversary. A simple alternative would be odometry or inertial 
navigation system (INS). However, both are subject to build-up of error with time, and often 
require an external aid. 

In this report, we introduce a 3D self-localisation method that uses 3D angle of arrival (AOA) 
measurements (i.e. azimuth and elevation) from surrounding landmarks. We assume that the 
AOA measurements are available, even though in practice they need to be collected from the 
onboard sensors such as cameras or RF receivers. 

This work is an extension of our previous report on 2D localisation [4] where the altitude and 
the tilt angle were not considered (assumed zero). In practice, vehicles (especially the airborne 
vehicles) can be tilted at times, adding errors to the bearing-only measurements. In these 
situations the localisation problem has to be formulated in six-degrees of freedom (i.e. 3 DOF 
for sensor position and 3 DOF for sensor orientation). 

We formulate the localisation problem as one of minimising the collinearity error between the 
estimated line of sight (LOS) and the measured AOA, as shown in Figure 1. Using such error 
metric, we arrive at an iterative algorithm that runs in two parts: initial estimation of position 
and azimuth assuming zero tilt, followed by iterative orientation and position updates using 
small angle approximation approach. This method is efficient requiring a small number of 
iterations and is shown to be globally convergent and robust. 
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Body Coordinate System 

Measured LOS vectors 

-v Actual LOS 

PN 

Landmarks • * 
Pi 

Reference Coordinate 
System 

Figure 1:   Illustration of UAV taking noisy AO A measurements from landmarks in order to estimate 
its position and orientation 

This report is organised as follows: Section 2 describes the formulation of the proposed 
method and re-visits an existing method which will be used as a benchmark. In Section 3, 
simulation results and performance comparisons with the benchmark are given. Finally, 
Section 4 summaries and concludes the study. 

2. Problem Formulations 

2.1 Optimisation of Translation Vector 

The points, p,, in Figure 1, are landmark positions given in the external reference frame. We 

first move them so that their mean coincides with the new origin. The translated landmark 
positions are given by 

1  " 
q,=p.-p where p = -^p7. (1) 

Note that q = 0. 
/-I 

In the translated frame, we define b as the vehicle position, and v, as the unit line of sight 

(uLOS) vector from b to q,, expressed in body frame (see Figure 2). 



DSTO-TR-2278 

n absence of noise 

v=R(q,-b) 
d, 

_Rq,+t 

Body frame 

where d, = ||q, -b| 

t = -Rb 

R:   Rotation from Reference 
Frame to Body Frame 

Reference Frame i 

Figure 2:   Definition of unit line of sight vector v, and translation vector t. Note v is expressed in the 
sensor (body) frame. 

In the absence of measurement errors, we have the following relationship, 
R(q,-b)    Rq,+t 

V'~      d,       =     d, 
where 

• d, is the distance between q, and the estimated vehicle position, b . 

• R is the rotation matrix from the reference frame to the body frame, and 
• t is the translation vector (t = -Rb). 

(2) 

In the presence of measurement errors, v. is no longer equal to —— , and the objective 
dl 

becomes to minimise the following cost function, 

£(R,t) = £ v, x 
Rq,+t 

(3) 

.th where v, is the unit pointing vector along the measured azimuth /?, and elevation at to the i 

landmark. This error metric is a measure of the collinearity between the measured and 
estimated uLOS vectors. 
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/* 

d, 

d,     ) Measured uLOS 

Figure 3:   Definition of the error metric as the collinearity of estimated and measured uLOS vectors 

Examining Figure 3, the error given by (3) can also be expressed as 

£(R,t)=£|K±i Rq,+t 
\J 

(4) 

If we let y = v,vf, then the optimal translation vector, t, can be obtained by solving the 
equation below. 

V,£(R,t) = £-r{2(I-V/)t + 2(I-Vf)Rq,}=0 

If we let 

A,=L-r^,(3x3) 
a, 

(5) 

(6) 

Then (5) becomes 

(2>,)t+l>,Rq,=0 
f-i i=i 

By rearranging (7), we obtain topl as below, 

(7) 

V =-A"'ZA/Rq, where A = JA, (8) 
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2.2 Azimuth and Position Estimation (AZIPE) 

The rotation terms (ie., roll, pitch, and azimuth) are expressed as sums and products of 
trigonometric functions in R, making the objective function in Equation (4) highly non-linear. 
Finding the closed-form solution for all three angles is very challenging. 

To simplify the approach, we assume that the roll (<j>) and pitch (6) are known, and try to find 

the optimal azimuth (y/). The rotation from the reference to body frames is given as 

R = 

hcosy/ hs'my/ -a 

kcosyz-lsiny/     I cos i// + k sin i//      b 

«cosy/ + vsirn£/    -vcos^ + wsin^     c 
(9) 

where 

h = cos0, k =sm<f>s'mB, I = cos<j>, u = cos^sin# 

v = sin^, a = smd, 6 = sin^cos#, c = cos^cos# 

We define e the vector to be estimated as 

e = [cosv,siny/]' 

Then Rq, in Equation (8) can be expressed as linear equation of e. 

Rq, =Q,e+s, 

(10) 

(11) 

where q, , Q, 
M<x-vq,y     vqix+uqiy 

and s, = qit 

Therefore t(j;„ in (8) becomes 

t„P,(e) = -A-,jA,(Q,e + s,) 

-A-'^A.Q,  e-A-'£A/S/ 

where F = -A'£A,Q, and w^-A^A^s,. 

(12) 

(13) 

(14) 

Finally, from (11) and (13), we have an expression for Rq, +t     as 

(15) 
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where G, = F + Q, and g, = w + s,. (16) 

After, substituting (16) into (4) (see Appendix B for details), we arrive at the following 
quadratic cost function 

£(e) = e7Me + 2m7e + ^ 
where 

M = £GfA,G, (2x2) 

m = 2XA.g,  (2x1) and 

(17) 

(18) 

(19) 

(20) 

We substitute (10) into (17) and obtain, 

E(i//) -[cost// sin i//] 
Mn    M22 

cos^ 

siny/ 
+ 2/M, cos^ + 2m2 sin (f + d 

= (A/,, - A/22)cos2t// + 2A/12cos^sin^ + 2m, cosy/ + 2m2siny/ + M22 + d 

= Acos2 i// + Bcosi//sim// + Ccosi// + Ss\nt// + D. (21) 

The optimal angle is obtained by differentiating E  with respect to t// and setting the 

derivative to zero as, 
dE 

di// 
=-2Acost//sint// + 2B cos21//- B-C sin t// + S cost// = 0 

This leads to 
2 Bcos2 t// + S cost//- B = 2Acost//sint// + Csint//q 

which after squaring and rearranging, results in 

A4x
4 + AjX3 + A2x

2 +Alx + Ao=0 

where x = cost// and 

A4=A{A2+B2) 

A,=4(AC + BS) 

A2=S2+C2-A4 

A,=-4AC-2BS 

A0 = B2-C2 

(22) 

(23) 

(24) 
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Solving this quartic equation may, in theory, yield up to 4 real solutions. However, only those 
satisfying -1 < x < 1 are acceptable. The azimuth is given as y/ = COS'(JC) for each solution x, 

and we choose the one associated with the smallest E(y/). 

We put y/ into Equation (9) to obtain the optimal rotation, R, and the vehicle position is 

then obtained as 

Pv.hkk = -R' t.P + P (25) 

This solution is accurate if the initial tilt angles are known or accurately guessed. Often the 
exact tilt angles are unknown but small. We therefore assume they are zero, solve (24), and 
obtain an approximate solution for the vehicle's position and orientation. This approximate 
solution can be refined as explained in the next subsection. But before moving to the next 
subsection, we note that once an estimated vehicle position is computed, then approximate 
values for the parameters, d}, in (2) can be obtained as ||pv,hjde — P, || - 

2.3 Angle Increments and Position Estimation (AIPE) 

Once the AZIPE algorithm is executed, we are given initial orientation estimates for $,, 60 

and y/0. Often these estimates are very close to the optimal solution. To refine their estimates, 

we perturb them as tj> = </>0 + 8<j>, 9 = 60+86, and i// = y/0+Sy/, and re-derive the objective 

function (4) using the new small angle variables, {8<j>,88,8if/). 

The rotation matrix by definition is given as 

R = 
cos^cos^ cos^siny/ -sin# 

-cos^siny/ + sin ^ sin # cosy/     cos0cosy/ + sin0sin#sin(</     cos^sin^ 
sin^siny/ + cos0cos(//sin#     -cosy/sin^ + sin^siny/cos^    cos#Scos# 

(26) 

By substituting <fi = 4>o+S0, 6 = 00 + SO, and y/ = y/a + 8y/ into Equation (26), expanding and 

collecting the first order terms, then each element in R can be expressed as a linear function of 
the incremental terms {8</>,88,8y/}. 

c\   c2   c3 

R= c4   c5   c6 (27) 

cl   cS   c9 

where ci = ci0 + ci^8<j> + ci280 + ci}8i//   ,/ = 1...9. The details of elements (cl, ...,c9) are given in 
Appendix B 

Again we need to re-express Rq, from Equation (8) in the form of Q,e + s,. 

Rq, 

cl cl c3" Hix 

c4 c5 c6 % 
cl c8 c9 3<*. 
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(clo<7„ +c2o9,v + c3o9*) + (cl><71, + c2
l<7,> +c3,gtt)A^ + (cl2<7tt + c22gl> + c32<7jA0 + (cl,<7„ +c2,^ + c3,?„)A(p 

(c4o 9., + c5o ?» + c6o <7„) + (c4i ?i, + c5. <7,, + c6i li, )W + (c42 <7„ + c52 % + c62 q„ )A0 + (c4, <?„ + c5, qly + c6,qa)& y/ 
_(c709„ +c80?rv + c90q„) + (c7tq,x + c8,<?;> + c9,q„)Ari + (c71q,x+cZ2q,), +d92qa)A0 + (cl,qa + c8,^ + c9,<7„)AV 

= Q,e + s, (28) 

where 

Q, 

e = 

s, = 

C'l 9„ + c2L ?,• + c3l1„ Ch <7„ + c2! ?(,. + c32 ft, Cl31* + c23 <?,> + c331,z 
c4i<?„ +c5i"?,v +c6i<7„    c42?„ +c52g,„ +c62<jr„    c4,^, + c5jfy + c6,q„ 

c7,^ +c8,9„ +c9l9/r    c72<7„ +c82<jrv +c92<?„    c7,g„ +c8j^ + c%q„ 

8<j> 

80 

By 

c4„^„+c50^+c60^ 

c7o?*+c8o<7.>+c9o?« 

Having derived Q,, e, and s,, we obtain a new objective function similar to (17). 

£(e) = e7Me + 2m7e + </ 

where M = £G
7
A,G, , m = £cfA* and rf = £g,rA,g, 

Differentiating (32) with respect to e and setting it to zero yields 

V £ = 2Me + 2m = 0 

Rearranging Equation (34), we obtain the optimal solution 
e„„ =-M"'m op 

Once e = [80,30,yy/]1 is computed, we have the improved angle estimates, 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

rap V 'sf 
'* = 0O 

+ 80 

T   Op -Vo. 8y 

(36) 

We construct R from these updated Euler angles, and compute the vehicle position as 

Pr„D„,=-R7toP+P (37) 

The angle updates (35) and (36) are usually applied several times until no significant change 
occurs in e. In our applications, we found that no more than two iterations of (35) and (36) are 
needed to obtain the optimal solution. 
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2.4 Orthogonal Iteration (OI) Algorithm as Baseline 

In this subsection, we present a pose estimation method known as the orthogonal iteration (OI), 
proposed by [6]. This method is also based on the collinearity property, and is shown to be 
efficient and robust. We will describe the formulation of this method, as it was used as a 
benchmark for performance comparison. 

The objective is to minimise the following cost function 

£(R,t) = ]T Rq, +1 Rq,+t 

d. 
(38) 

which is identical to our cost function in Equation (2). The optimal translation vector, t, is also 
obtained as 

**=-A"'ZA<R(I. where A=i>.and A<=^TL- <39) 

Note that obtaining the actual value for t     requires the rotation matrix R . This R can be 

obtained from the following algorithm known as the absolute orientation [1-2]. 

2.5 Absolute Orientation (AO) 

Assuming that we have landmark position coordinates in both the body and reference frames, 
the absolute orientation algorithm finds topl and R which minimise the least-square error 

problem defined as below. 

n 

Minimise £(R,t) = £|Rq, +t-r,fl subject to R7R = I (40) 

where r; =dl\l. 

Differentiating (40) with respect to t, setting it to zero, and noting q = 0 yields 

K„, =-E(-R1- + r() = -Rq+r = r. (41) 

Substituting (41) into (40) yields 

£(R,t) = X|Rq,-r| where r/=r,-i;. 

= £(q,rq, + r/rr/-2r/rRq(). (42) 
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ft 

Our optimisation problem becomes maximising   Vr/rRqJ   subject to   RrR = I. Since 
(=1 

n n n 

^r/;Rq, is scalar, then £r/7Rq, = /r(]Tr/7Rq,) 

= /r(]TRq,r/r) 

= fr(RX) (43) 

where X = £q/if (44) 

The trace becomes maximum when the matrix product RX is symmetric and positive definite. 

If we compute the SVD of X as X = U Z Vr where U and V are orthogonal matrices and X is 
diagonal with non-negative elements, then ?r(RX) is maximised if 

R = VUr (45) 

To prove this, we need to show that RX = VUr(U£ V7) is symmetric and positive definite. 

RX = VU7'(UlVr) 

= VZV7' 

This is a symmetric matrix, and since the diagonal elements of X are non-negative, RX is 

positive definite. Note that one should make sure that the determinant of R = VUr is 1. 

The OI algorithm in [6] is implemented as follows: 

1. Assume r, = v, for i = 1,..., n 
n 

2. compute X = ]Tq/r/'
7 

3. [U,I,V] = m/(X) 

4. R^, = WT (initial R estimate for the next stage) 

5- t^-A-'XA.Rq, 

6- ^ =||R^q,+top,|| for/ = l n 

7. r, =dl\l for i = 1, ..., n 

8. Go to step 2 and repeat until R and t converge. 

The vehicle position (in reference frame) is then obtained as p - R^t,^,. Steps 2-4 update the 

estimate of R, which is then used to compute the translation vector in the fifth step. 

We also look at a non-iterative method proposed by Lepetit, et al. [5] which is not based on 
the collinearity cost metric. This method expresses the 3D landmark points as a weighted sum 
of four control points and solves the problem in terms of their coordinates. The computer 

10 
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simulations of this method indicate that this method is not as accurate and robust as the OI 
method. For fine-tuning, this method uses Gauss-Newton optimisation [1] which sometimes 
fails to converge if the measurements are noisy and the landmark number is small. Hence, we 
exclude this method in the performance comparison. 

3. Simulations 

3.1 Process Overview 

The simulation process is outlined in Figure 4. The proposed method on the left side starts 
with initial azimuth estimation (AZIPE). Optionally, the AZIPE can also estimate the position 
if necessary. In the simulations, we start counting the iterations after the AZIPE. Likewise, the 
benchmark method runs the absolute orientation (AO) to come up with the initial attitude 
estimates before the iteration count-up starts. 

Known: landmark position q={qi,...q„} 
Initial Guess: <t>0=0, 60=0, d={dl,...d„}=1 
Input: uLOS vector v={vi,...vj 

Intial stage=^ iteration count =0 

V={V1,- v„} 

(   <e0=o - 
e0=o 
d={d,„ dn}=1 

I 

T   t 

AZIPE 

^vehicle j {«o=0, 90=0, 4J0. d) 

"    " 

AO 

^vehicle ZJ {«>o, 80, Vo) 

d={d,. ••dn}=l---fr 

J 

AIPE 01 

{*, 6, y\>, d}    i     V 
^vehicle ^vehicle 

_J 

i     \ {«, 6, i)j, d} 

Figure 4:   Process overview of the proposed method (left) and benchmark method (right) 

We assume that the vehicle's tilt angles remain moderately small (eg., < 40°), therefore 
assuming zero tilt angles for the AZIPE may be acceptable. On the other hand, the initial AO 
algorithm assumes r, = v, (i.e., all the landmarks are unit distance away from the vehicle). The 

role of the initial estimator is to bring the initial estimate close to the global minimum, so the 
global convergence is ensured when the AIPE or OI is executed. 

11 
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The AIPE and OI were run iteratively, gradually improving the attitude and position 
estimates by feeding back the attitude and vehicle/landmark distance estimates. Steps 2-4 in 
Section 2.4 are run to produce the initial R estimate required by the fifth step. Steps 5-7 
followed by steps 2-4 (i.e., AO) form the OI process. 

The following are the default parameter settings for the simulations. The parameters remain 
unchanged except for the one whose effect we want to see on the system performance. These 
are 

• a(8el) = 3° and a{8a2) = T for each AOA measurements. 

• Landmark positions: {(0,0, -10), (40,0, -10), (0,40, -10), (40,40, -10)} {(0,20, -10), (20,0, - 
10), (20, 40, -10), (40, 20, -10)}m (negative z => positive altitude) 

• Vehicle orientation: [0,0,iy] = [2O°,2O°,45o] 

• Vehicle position: [x, v,z]=[4m, 10m, 0m] 

• Number of iterations=4. 

In the following subsections, we conduct 1000 Monte-Carlo simulations to generate the 
performance metric in terms of estimation error statistics. It is expressed as the root mean 
square (RMS) of the horizontal-position, height, tilt and azimuth errors. We define the 

horizontal position and tilt errors as Jx2
err + y2

err and -y/^2
rr + 92

err respectively. The error curves 

from the proposed and benchmark methods will be shown in green and blue respectively, and 
will be compared with the Cramer-Rao Lower Bound (CRLB) shown in red. 

The CRLB represents the smallest estimation error (RMS) that any unbiased method can 
possibly achieve for the given geometry and measurement errors. We assume that the 
measurement errors are Gaussian of mean zero. The descriptive derivation of the CRLB is 
given in Appendix D. 

3.2 Convergence Speed 

In this subsection, we examine the convergence trend of both localisation methods. The 
iteration-count up to 10 is attempted and the results are given in Figure 5. Zero iteration 
means that the process stopped after the initial stage. For index of zero, the horizontal position 
error of the AO is much larger than that of the AZIPE, whereas the other error terms from the 
two methods are comparable. Both methods converge rapidly: 3-4 iterations for the OI and 2 
iterations for the AIPE. It appears that the small angle approximations in the AIPE tolerate the 
initial roll and pitch errors of (20°,20°)and azimuth error of 7° (a) 

12 
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Figure 5:    Estimation Error versus number of iterations at default location (4,10,0) 

Apart from the convergence speed, the AIPE is also favoured in terms of post convergence 
residual errors. It is noticed that the error differences are more evident for angular terms than 
for the positional terms. Such differences between the two methods arise from the fact that the 
objective function used in the AO (see Equation (40)) is not always a close approximation of 
true collinearity measure. The weights are not equally distributed to the landmarks - more 
weights are given to the far landmarks than to the near landmarks. The AO would perform 
better if the landmarks are equally distant from the vehicle. 

To demonstrate this, we ran another simulation where the vehicle is moved to (20,20,0) m so that the 
distances to all the landmarks are similar. The new estimation errors are given in 

Figure 6. With the new geometric arrangement, the AO algorithm produces a very accurate 
initial pose estimate, which gets slightly worse as the OI iteration takes place. The OI solutions 
converge after 1-2 iterations, and the attitude accuracy is significantly closer to that of the 
AIPE. The AIPE converges after 2 iterations as before, showing convergence patterns that are 
more consistent regardless of the geometric changes. For the remaining simulations, we apply 
a fixed iteration-count of 4 to the two methods. 
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Figure 6: Estimation errors versus number of iterations at another location (20, 20, 0). Initial AO 
algorithm of the benchmark method works better as the distances from the vehicle to the 
landmarks are similar. 

3.3 Effect of Measurement Errors 

Here we explore the effect of the measurement (AOA) errors on the estimation accuracy. The 

elevation and azimuth errors (a) are equally varied from 0.1° to 10°, and the results are 

shown in Figure 7. The green curves (proposed) remain closer to the CRLB curve (red) than 
the blue curves (benchmark) do, within the entire angle error range. 

It is noticed that the green curves start to depart from the red curves when the AOA angle 

exceeds 3°. To explain this we revisit Equation (4) 

£(R,t) = £ Rq,+t Rq,+t 

According to the diagram in Figure 3, we realise that 

Rq,+t (    r Rq, +1 
= (sin(/f(24_e/r)) . 

For small AOA errors (eg., < 3°), the following approximation holds: 

sin(AoA_err) * AOA   err. 
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Therefore, for small AOA errors, the cost function can be expressed as 

n 

£(R,t) « ^(AOA   err)2, which is the same as the cost function associated with the CRLB. 
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Figure 7:   Estimation errors versus AOA noise 

3.4 Effect of Initial Tilt Error 

In Section 3.2, we observed that the AZIPE produced a large azimuth error of 7° when the 

initial tilt error was 20°. If the initial tilt error is larger, then the azimuth error will be even 

larger placing the initial estimate far from the global minimum. Here we examine if the AIPE 
and OI are capable of consistently steering the estimate towards the global minimum. 

Figure 8 shows no sign of divergence - the blue and red curves follow the shape of the red 
curves. The shape variation of the curves is mainly due to the fact that the AOA 
measurements change when the vehicle tilt changes. For example, the landmarks in the left 

and right of the vehicle with zero tilt, will appear above and below when the vehicle rolls 90°. 

Such measurement changes alter the cost function leading to the variations in all three curves 
in Figure 8. It appears that the proposed and the benchmark methods are capable of 
consistently bringing the coarse initial estimate to global minimum. Again, the proposed 
method produces more accurate estimates than the benchmark. 
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Figure 8 Estimation errors versus the vehicle tilt angles. Tilt angles are applied equally to the roll and 
pitch. 

3.5 Effect of Landmark Numbers 

In this subsection, we look at the effect of landmark numbers (n) on the estimation accuracy. 
The landmark number is varied from n=4 to 16 in steps of 2. The 16 landmark locations are 
given in Appendix E. 

As in Figure 9, the localisation errors clearly decrease as n increases. The error reductions for 
the attitude are more gradual and the pattern seems to continue past rz=16. On the other hand, 
for the position, the error reductions are more abrupt for n=4~6, and become slower for the 
larger n. 

As expected, increasing the number of landmarks improves the estimation accuracy, however 
this also increases the computational effort (O(n)). Again, the proposed method outperforms 
the benchmark method. 
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Figure 9 Estimation errors versus number of landmarks. 

3.6 Random Positions and Orientations 

In this subsection, we randomise the vehicle position/orientation and the landmark positions. 
Both the vehicle and landmark positions are uniformly distributed within [-20 20] for all three 

axes. The vehicle roll and pitch angles are uniformly distributed within [-40° 40°] and the 

azimuth angle has an uniform distribution within [-180° 180°]. The aim is to try exhaustive 

combinations of geometries and see if the proposed method is consistently better than the OI 
method. In this test, we try five levels of difficulties, where the difficult setting has a smaller 
number of very noisy measurements and the easy setting has a large number of less noisy 
measurements (see Table 1). 

Table 1:     Five difficulty indices and the associated measurement arrangements 

Difficulty Index 1 2 3 4 5 
Landmark Numbers 8 12 16 20 24 
Measurement Noise 5 4 3 2 1 
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Figure 10: Estimation errors versus difficulty indices, when the vehicle-landmark geometries are made 
random. Higher the index, easier the problem. 

Figure 10 shows the RMS errors after 3000 Monte-Carlo simulations. All the errors terms 
decrease as the number of measurements increases and the measurement noise decreases. It is 
also clear that the proposed method consistently outperforms the OI method, reinforcing the 
previous findings. 
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4. Conclusions 

In this study, we present an accurate and efficient 3D localisation method that uses the angle 
of arrival measurements from stationary landmarks. The underlying idea is to minimise the 
collinearity error between the measured and estimated uLOS vectors. The algorithm runs in 
two parts - the AZIPE for initial azimuth estimation assuming zero tilt and the AIPE for 
progressively improving all three orientation angles. The findings from the experiments are: 

• The proposed algorithm converges fast (e.g., <3 iterations) for general geometric 
configurations. 

• The proposed algorithm tolerates large measurement and tilt errors. 

• The estimation accuracy improves as the number of landmarks increases. However, 
the computation effort also increases as the number of landmark increases (~ 0{n)). 

• In all cases, the proposed method outperforms the benchmark method. 

The proposed method appears to be accurate, globally convergent and computationally 
efficient requiring only a small number of iterations. 
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Appendix A: Derivation of Optimal Translation 

Given 

wo-jKii Rq,+t 
(Al) 

If we let V, = v,v7 then the optimal translation vector, t, is given by 

£(R,t) = £ 
Rq,+t Rq,+t Rq+t Rq,+t 

= li(qrRr+tr)(Rq/+t)--i-(vrRq/-vrt)(v?-Rq/-vft) 

= S-TKR7Rq, +q,7Rrt + t7Rq, + t7t-(q,7R7'v, -t7'v,)(v7Rq, -vft)} 

= ^^{q7q,.+ 2q7Rrt + t7't-(q7'R7'v,v7'Rq,-qfR^v.vft-t'v.vfRq,+t'v,v7't)} 

n       i 

= £ —jqfq, +2trRq, + t7t-(q7 R7 VRq, -q,7 RrV,t-t7V,Rq/ + t7V.t)} 

= Z4{tr(I-V/)t + 2tr(I-V/)Rq/-qfRrV(Rq/+q/
rq/} (A2) 

Let A, = -—T-^- , then setting ;— to zero gives 
d. dt 

= Z^r{2(I-v.)t + 2(I-v.)Rt>J = 0 dE(R,t) 
8t       tfd; 

J-L(I-V()t+-i-(I-V/)Rq(=0 

(ZA,)t+ZA.Rq.=0 
1=1 7=1 

and therefore 

t„p,(R) = -A-'XA,Rq, where A = J A, (A3) 
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Appendix B:  Derivation of Quadratic Cost Function 

£(R,t) = X Rq,+t 
2       f 

Rq,+t 
\J 

(Bl) 

Replacing Rq, +t with G,e + g, gives: 

V F,e + g, v,?'(G,e + g,) 

V. "I j 

,e7G,7G,e + g,7"gj + 2g,7G,e    e7G7v/v
7G,e + g,7'v,v,7g, + 2g,7v,v7G,e i        i ra/    rai o; i  ill I o> /     i  or Of i     i i 

_^e,Gl
r(l-V,)G1e + 2g/(I-V,)Gle + gl

r(l-V,.)gi 

~h d] 

= Xe7'G,rA,G,e + 2g,7A,G,e + g/A,g, 

Xg/A^le + Jg/^g, = elZG,'A,G, 

£(e) = erMe + 2mre + </ 

f " 
e + 2 

V/-1 
(B2) 

(B3) 
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Appendix C: Linearised Rotation Matrix 

c\ c2 c3 

R= c4 c5 c6 

cl c% c9 

where 

in the form of c\ = cl„ cl =cos#cosy/0 

+ (0)<ty 

-(sin#0cos^0)&? 

- (cos 0O sin y/0 )Si// 

c2 = cos 60 sin y/Q 

+(O)<50 

- (sin d0 sin y/0 )86 

+ (cos#0cos^0)<% 

c3 = -sin#0 

+(O)<50 

- (cose0)se 

+ (0)<ty 

c4 = (sin$,sin#0cos^0 -cos$,sin^0) 

+ (cos $, sin 0O cos y/0 + sin $, sin v/0 )<5^ 

+ (sin $, cos #0 cos y/0 )S0 

+ (cos </>Q cos ^0 - sin 0O sin $, sin ^/0)<fy/ 

c5 = (sin $, sin #0 sin y/0 + cos </>Q cos ^0) 

+ (cos $, sin 80 sin ^0 - sin $, cos ^0 )cS# 

+ (sin $, cos#0 sin if/0)S6 

+ (-cos$, sin v0 + sin $> s'n ^o COSI//0)SI// 

+ c\d(j> 

+ c\2S0 

+ c\iSy/ 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

c6 = sin <j>0 cos #0 

+ (cos$,cos#0)<S# 

- (sin <f>0 sin #0 )S6 

+ (0)<fy 

(C6) 
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cl = (cos $, sin G0 cos y/0 + sin <j>0 sin y/0) 

+ (-sin <j>0 sin #0 cos^0 + cos$, sin ((/0)^ 

+ (cos^0 cos #0 cos^/0 )<50 

+ (sin$,cosv/0 -cos^0sin#0sinv0)<V 

c8 = (cos <j>0 sin #0 sin ^/0 - sin $, cos ^0) 

+ (-sin $, sin 0O sin ^/0 - cos $, cos y/0 )<$# 

(C7) 

(C8) 
+ (cos <f>0 cos 60 sin y/0 )<J# 

+ (sin$,sin^0 +cos^0sin^0cos^0)^ 

c9 = cos$,cos#0 

-(sin^0cos6»0)^ 

-(cos$,sin#0)<?# 

+ (0)<fy/ 
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Appendix D: Derivation of CRLB 

The Maximum Likelihood Estimator (MLE) [1][7] has the following objective function: 

Minimise E(x) = £[a, - fa> (x)   p, - /„ (i)] • N"1 

where 
x = [x   y   z   0   0   i//]1  : vehicle position and orientation, 

(Dl) 

N. 
0     *\ 

/a,(i) = tan- 

: covariance matrix for i   elevation (or) and azimuth (/?) measurements, 

-v,(3) 
/ /»(x) = tarf 

Vv,(l)2+v,(2)\ 
and v, = R(p, -[x,y,z]7). 

The elevation and azimuth functions / (x) and fp (x) are non-linear (contains trigonometric 

terms). Omitting (x) from the functions, we define the Jacobian matrix for the I   landmark as 

F = 

Va, 8fa. dfa, Va. %,      ^ 
80     8y/ 

8x      dy      8z      80     80     dy/ 

dx dy dz 8<f> 80     dy/ 
dU dfp, 

dh VA Ve,     dfP, 
(D2) 

Vertically cascading for all the landmarks, we get 

and N •• 

The error covariance matrix for x is given as 

P = (F_,N-,F)"1 

N, 0 0 

0 0 

0 0 N„ 

(D3) 

(D4) 

And the square root of its diagonal elements are the CLRBs for the six parameters, 
(x,y,z,j,0,y/). 
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Appendix E:   Landmark Locations 

Total of 16 landmarks are available, and the first n landmarks are chosen in the simulations. 
For example, if n=6 then pi to p6 are selected. Note that negative z means positive height. 

Pi (0, 0, -10) m 
p2 (40, 0, -10) 111 

p3 (0, 40, -10) m 
P4 (40, 40, -10) m 
P5 (0, 20, -10) m 
P6 (20, 0, -10) 111 

P7 (40, 20, -10) m 
Ps (20, 40, -10) m 
P9 (0, 0, -20) m 
PlO (40, 0, -20) m 
Pn (0,40,-20) m 
P12 (40,40, -20) m 
PB        = (0, 0, -40) m 
Pl4 (40, 0, -40) m 
Pis (0, 40, -40) m 
Pie        = (40, 40, -40) m 
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